Monday, July 18, 2011

TECHNOLOGY: "Amplified" Nanotubes for Efficient, Loss-free Grid

The current U.S. copper-based grid leaks electricity at an estimated 5 percent per 100 miles of transmission; Rice University researchers have achieved a breakthrough in the development of a cable that will make an efficient electric grid of the future possible; the armchair quantum wire (AQW) will be a weave of metallic nanotubes that can carry electricity with negligible loss over long distances

Rice University scientists have achieved a breakthrough in the development of a cable that will make an efficient electric grid of the future possible.
Armchair quantum wire (AQW) will be a weave of metallic nanotubes that can carry electricity with negligible loss over long distances. It will be an ideal replacement for the U.S. copper-based grid, which leaks electricity at an estimated 5 percent per 100 miles of transmission, said Rice chemist Andrew R. Barron, author of a paper about the latest step forward published online by the American Chemical Society journal Nano Letters.
A Rice University release reports that a prime technical hurdle in the development of this “miracle cable,” Barron said, is the manufacture of massive amounts of metallic single-walled carbon nanotubes, dubbed armchairs for their unique shape. Armchairs are best for carrying current, but can not yet be made alone. They grow in batches with other kinds of nanotubes and have to be separated out, which is a difficult process given that a human hair is 50,000 times larger than a single nanotube.  Read more

No comments: